翻訳と辞書
Words near each other
・ Rogerstown Estuary
・ Rogersville
・ Rogersville and Jefferson Railroad
・ Rogersville Historic District
・ Rogersville Parish, New Brunswick
・ Rogersville railway station
・ Rogersville, Alabama
・ Rogersville, California
・ Rogersville, Indiana
・ Rogersville, Iowa
・ Rogersville, Missouri
・ Rogersville, New Brunswick
・ Rogersville, Pennsylvania
・ Rogersville, Tennessee
・ Rogersville, Wisconsin
Rogers–Ramanujan continued fraction
・ Rogers–Ramanujan identities
・ Rogers–Szegő polynomials
・ Rogerville
・ Rogerville, California
・ Rogerville, Georgia
・ Roget Rocks
・ Roget Romain
・ Roget's Thesaurus
・ Rogeting
・ Rogfast
・ RoGFP
・ Roggalspitze
・ Roggan
・ Roggan Lake


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Rogers–Ramanujan continued fraction : ウィキペディア英語版
Rogers–Ramanujan continued fraction
The Rogers–Ramanujan continued fraction is a continued fraction discovered by and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

==Definition==

Given the functions ''G''(''q'') and ''H''(''q'') appearing in the Rogers–Ramanujan identities,
:\beginG(q)
&= \sum_^\infty \frac =\sum_^\infty \frac = \frac \\
&= \prod_^\infty \frac)}\\
&=\sqrt()\,_2F_1\left(-\tfrac,\tfrac;\tfrac;\tfrac\right)\\
&=\sqrt()\,_2F_1\left(-\tfrac,\tfrac;\tfrac;-\tfrac\right)\\
&= 1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots
\end
and,
:\beginH(q)
&= \sum_^\infty \frac =\sum_^\infty \frac = \frac \\
&= \prod_^\infty \frac)}\\
&=\frac}}\,_2F_1\left(\tfrac,\tfrac;\tfrac;\tfrac\right)\\
&=\frac}}\,_2F_1\left(\tfrac,\tfrac;\tfrac;-\tfrac\right)\\
&= 1+q^2 +q^3 +q^4+q^5 +2q^6+2q^7+\cdots
\end
and , respectively, where (a;q)_\infty denotes the infinite q-Pochhammer symbol, ''j'' is the j-function, and 2F1 is the hypergeometric function, then the Rogers–Ramanujan continued fraction is,
:\beginR(q)
&= \frac}H(q)}}G(q)} = q^}\prod_^\infty \frac)})}\\
&= \cfrac}}}
\end

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Rogers–Ramanujan continued fraction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.